首页 > 实用范文

数形结合论文参考文献精品多篇

时间:2025-08-05 07:10:58
数形结合论文参考文献精品多篇(全文共7372字)

[寄语]数形结合论文参考文献精品多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。

高考数学专题复习:数形结合思想 篇一

高考冲刺:数形结合

编稿:林景飞

审稿:张扬

责编:辛文升 热点分析 高考动向

数形结合应用广泛,不仅在解答选择题、填空题中显示出它的优越性,而且在解决一些抽象数学问题中常起到事半功倍的效果。高考中利用数形结合的思想在解决选、填题中十分方便,而在解答题中书写应以代数推理论证为主,几何方法可作为思考的方法。数形结合的重点是研究“以形助数”,但“以数解形”在近年高考试题中也得到了加强,其发展趋势不容忽视。历年的高考都有关于数形结合思想方法的考查,且占比例较大。

知识升华

数形结合是通过“以形助数”(将所研究的代数问题转化为研究其对应的几何图形)或“以数助形”(借助数的精确性来阐明形的某种属性),把抽象的数学语言与直观的图形结合起来思考,也就是将抽象思维与形象思维有机地结合起来,是解决问题的一种数学思想方法。它能使抽象问题具体化,复杂问题简单化,在数学解题中具有极为独特的策略指导与调节作用。

具体地说,数形结合的基本思路是:根据数的结构特征,构造出与之相应的几何图形,并利用图形的特性和规律,解决数的问题;或将图形信息全部转化成代数信息,使解决形的问题转化为数量关系的讨论。

选择题,填空题等客观性题型,由于不要求解答过程,就某些题目而言,这给学生创造了灵活运用数形结合思想,寻找快速思路的空间。但在解答题中,运用数形结合思想时,要注意辅之以严格的逻辑推理,“形”上的直观是不够严密的。 1.高考试题对数形结合的考查主要涉及的几个方面:

(1)集合问题中Venn图(韦恩图)的运用;

(2)数轴及直角坐标系的广泛应用;

(3)函数图象的应用;

(4)数学概念及数学表达式几何意义的应用;

(5)解析几何、立体几何中的数形结合。

2.运用数形结合思想分析解决问题时,要遵循三个原则:

(1)等价性原则。要注意由于图象不能精确刻画数量关系所带来的负面效应;

(2)双方性原则。既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分

析容易出错;

(3)简单性原则。不要为了“数形结合”而数形结合,具体运用时,一要考虑是否可行和是否有利;

二要选择好突破口,恰当设参、用参、建立关系,做好转化;三要挖掘隐含条件,准确界定参变

量的取值范围,特别是运用函数图象时应设法选择动直线与定二次曲线为佳。

3.进行数形结合的信息转换,主要有三个途径:

(1)建立坐标系,引入参变数,化静为动,以动求解,如解析几何;

(2)构造成转化为熟悉的函数模型,利用函数图象求解;

(3)构造成转化为熟悉的几何模型,利用图形特征求解。 4.常见的“以形助数”的方法有:

(1)借助于数轴、文氏图,树状图,单位圆;

(2)借助于函数图象、区域(如线性规划)、向量本身的几何背景;

(3)借助于方程的曲线,由方程代数式,联想其几何背景,并用几何知识解决问题,如点,直线,斜

率,距离,圆及其他曲线,直线和曲线的位置关系等,对解决代数问题都有重要作用,应充分予

以重视。

5.常见的把数作为手段的数形结合:

主要体现在解析几何中,历年高考的解答题都有这方面的考查。

经典例题透析

类型一:利用数形结合思想解决函数问题 1.(2010全国Ⅰ·理)已知函数a+2b的取值范围是

A.

解析:画出

由题设有,

B.的示意图。 , ,若,且,则

C.

D.

∴ ,

令 ,

∴ , ∴ 在,

。 上是增函数。

举一反三:

【变式1】已知函数

。选C.

在0≤x≤1时有最大值2,求a的值。

解析:∵

∴抛物线, 的开口向下,对称轴是,如图所示:

(1)

(2)

(3)

(1)当a<0时,如图(1)所示, 当x=0时,y有最大值,即

∴1―a=2。即a=―1,适合a<0。

(2)当0≤a≤1时,如图(2)所示, 当x=a时,y有最大值,即

。 。

∴a―a+1=2,解得

2。

∵0≤a≤1,∴不合题意。

(3)当a>1时,如图(3)所示。

当x=1时,y有最大值,即

综合(1)(2)(3)可知,a的值是―1或2

【变式2】已知函数

(Ⅰ)写出

(Ⅱ)设的单调区间; ,求

在[0,a]上的最大值。

。∴a=2。

解析:

如图:

(1)的单调增区间:

,;单调减区间:(1,2)

时,,。

(2)当a≤1时,当

【变式3】已知

()

(1)若,在上的最大值为,最小值为,求证:;

(2)当]时,都

,时,对于给定的负数,有一个最大的正数,使得x∈[0,

有|f(x)|≤5,问a为何值时,M(a)最大?并求出这个最大值。

解析:

(1)若a=0,则c=0,∴f(x)=2bx

当-2≤x≤2时,f(x)的最大值与最小值一定互为相反数,与题意不符合,∴a≠0;

若a≠0,假设,

∴区间[-2,2]在对称轴的左外侧或右外侧,

∴f(x)在[-2,2]上是单调函数,

(这是不可能的)

(2)当,时,,

∵,所以,

(图1)

(图2)

(1)当

所以

即是方程,时(如图1),则的较小根,即

(2)当

所以

即是方程,时(如图2),则的较大根,即

(当且仅当

时,等号成立),

由于,

因此当且仅当时,取最大值

类型二:利用数形结合思想解决方程中的参数问题 2.若关于x的方程有两个不同的实数根,求实数m的取值范围。

思路点 ……此处隐藏2688个字……合的方法进行教学,帮助学生更好地理解知识点,同时要注意培养学生运用数形结合方法解决数学题的习惯。小学生在平时的做题过程中,常常会忘了使用“数形结合”方法,有的还不会。因此,老师在平时的教学中,一定要培养学生养成运用数形结合方法的好习惯。针对不同的年龄段学生,采用不同的方法,比如低年级学生,引导学生在生活中找实物,高年级的学生则学会简单的画图等,让学生建立数形结合的思想。

(二)数形结合要注意利用多媒体技术 多媒体的发展已经迅速蔓延到教学领域,对于比较难懂的知识点,老师要借助多媒体技术实施教学。因为多媒体技术可以移动图像,当碰到需要运用想象思维的时候,可以在多媒体中进行展示。

三、结语

在小学数学中运用数形结合教学思想,可以有效提高课堂教学效率,帮助学生更快地理解知识点。教师应根据不同情况,综合运用“以形助数”和“以数解形”这两种不同方式,取得更好的教学效果。

作者:季利明 工作单位:赤峰市元宝山区元宝山镇马林小学

浅谈小学数学教学数形结合思想的运用 篇四

浅谈小学数学教学数形结合思想的运用

摘要:数形结合思想是新课程背景下重要的数学教学理念,受到了广泛的重视。在小学数学一线教学中,数形结合思想还有待数学教师进一步的学习与运用,促进小学生思维能力的发展,提升小学数学教学质量的提高。

关键字:小学数学; 数形结合思想 ; 运用

一、小学数学运用数形结合思想的作用

数学是小学教育阶段的基础学科,它是研究数量、形状之间关系的学科,由于小学生思维的发展以具体形象思维为主要特点,因此,通过将数字以具体的图形体现出来,可以帮助小学生深入理解数量之间的关系。然而,在当前小学数学教学之中,由于数学教师对数形结合运用的不够,尤其是对数形结合思想的认识不足,对该思想的理论体系学习不够充分,使得数形结合思想在当前小学数学教学中的实际应用存在?^多的问题。通过研究表明,运用数形结合教学可以大大提高小学生对数学的理解程度。

数形结合二者是相互促进、相互补充的,通过恰当的转换,可以将数形结合运用在教学中,促进小学生对数学知识的掌握。一是数形结合有利于小学生对数学知识的掌握。当前小学数学所使用的教材较为系统科学,然而,教材中所呈现的知识对于小学生来说学习较为困难。因此,数学教师在教学过程中必须用学生易于理解的方式,才能让小学生轻松的学习掌握知识。比如,学生对符号和图形较为感兴趣并且能够记忆深刻,如果将数学中的一些知识用图形来代替,将知识与图形相对应,能够帮助小学生更加深刻的理解。

二是数形结合可以帮助小学生提高解决数学问题的能力。数形结合,其实是对数与形之间进行了联系与转化,从而为学生的学习提供了新的思路。尤其是在学习较为复杂的数量关系时,数学教师完全可以借助图形,反之亦然,学习图形的过程中,可以用数字之间的关系来表征。

三是通过数形结合更加有利于小学生思维的发展。心理学研究表明,人的左大脑使用最多,并且擅长进行抽象与逻辑思维,因此数学学科的学习较多运用左大脑。右大脑较为擅长形象思维,比如图形与想象活动,如果能够在学习中结合左半脑与右半脑,对于学生思维的发展、大脑潜能的开发具有重要的作用。

二、当前小学数学数形结合运用存在的问题

虽然数形结合思想在小学数学教学中具有重要的价值与作用,然而在实际教学过程中,其运用还有很多问题。

第一,部分数学教师对数形结合思想认识不够。数形结合思想在小学数学教学中并未得到全面的普及,这是由于部分数学教师对数形结合思想的价值与意义没有全面的认识,很多数学教师对新的教学理念持怀疑与观望的态度,尤其是在数学教学中普遍采用题海战术对学生进行机械式的训练,而没有通过运用数形结合这种有效的方式让学生了解概念本质,提高学习的效率。

第二,数形结合思想在教学过程中运用的方式不当。一是体现在大多数数学教师在进行新课讲授的过程中选择运用数形结合思想,而只有少数教师则选择在复习课中运用数形结合思想。因此,数学教师对于数形结合教学方式的运用倾向不同,如果只在新课讲授中采用数形结合思想而复习课中忽视,则会造成学生很容易将数形结合的方式忘记。二是部分数学教师在采用数学结合过程中,只选择在讲授图形与几何领域的内容中使用,而在数字关系中使用较少。

第三,数学教师在运用数形结合思想中,忽视了对学生进行思想的渗透。主要体现在数学教师对学生课后作业的完成中是否使用数形结合策略缺乏要求,虽然采用传统的做题方式,能够提高做题的效率。然而通过数形结合方式,可以在做一些较难的题的过程中大大提高做题的正确率。数学老师并没有给予学生及时的要求与提醒,因此,数形结合的思想并未形成学生自己的认知结构。

三、小学数学运用数形结合的主要策略

首先,小学数学教师应该加强学习数形结合的思想,认识数形结合思想的价值所在,并且将其形成教学的理念渗透在教学之中。虽然小学阶段的数学知识较为简单,然而最简单的数学中也蕴含着深刻的道理,只有通过将数字与图形结合,从抽象到形象,才能提升小学生解决问题的能力,锻炼小学生的思维能力。小学数学教师的任务不仅是要教会学生知识,更要锻炼学生的思维能力。同时,数学教师自身要加强对数形结合教学思想的学习,通过不断的学习,积累教学经验,并且将其运用在教学之中。

其次,小学数学教师要在教学过程中对学生渗透数形结合的思想。数学教师需要在不同的课型中采用数形结合教学思想,这样才能够让学生认识到数形结合学习策略的重要性与价值。比如,在新知识教学中借助图形与符号来感知,如果数学教师在教学的过程中能够采用数形结合,则学生很容易模仿老师。再比如,在复习课中采用数形结合,主要是老师要通过数形结合对学生进行归纳与总结,让小学生养成运用数形结合进行理清自己知识结构的习惯。

最后,数学教师应该实现教学方式的多元化,让数形结合思想全面渗透在小学数学教学过程中。当前的小学数学教材对数学计算没有做更高的要求,而将教学的目标与重点放在了培养小学生数形结合的思想方面。因此,在每一章的教学过程中都可以用用数形结合思想,数学教师要善于挖掘数形结合思想并将其渗透在课堂中。与此同时,数学教师应该在教学的方式上实现情景创设的多样化,给予学生接触数形结合的机会,让学生通过体验数形结合来学习和巩固知识,内化为自己的一种能力。再者,还要在多元化的评价方式上实现数形结合的思想,只有在评价的时候重视对数形结合运用方式的鼓励,学生才会有更强的学习动机,才会更加重视对数形结合的运用。

参考文献:

[1]张雅芬。以“形”助“数”促发展――例谈数形结合思想在小学数学教学中的应用[J]。课程教育研究。 2015(32)

[2]范凌红。数形结合思想在小学数学教学中的实践研究[J]。课程教育研究。 2015(28)

[3]李凤云“数形结合”。在小学低段数学教学中的应用[J]。课程教育研究。 2015(24)

你也可以在搜索更多本站小编为你整理的其他数形结合论文参考文献精品多篇范文。

《数形结合论文参考文献精品多篇(全文共7372字).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式