
[概述]初三数学教学反思【多篇】为的会员投稿推荐,但愿对你的学习工作带来帮助。
初三数学的教学反思 篇一我们常有这样的困惑:不仅是讲了,而且是讲了多遍,可是学生的解题能力就是得不到提高!也常听见学生这样的埋怨:巩固题做了千万遍,数学成绩却迟迟得不到提高!这应该引起我们的反思了。诚然,出现上述情况涉及方方面面,但其中的例题教学值得反思,数学的例题是知识由产生到应用的关键一步,即所谓“抛砖引玉”,然而很多时候只是例题继例题,解后并没有引导学生进行反思,因而学生的学习也就停留在例题表层,出现上述情况也就不奇怪了。
孔子云:学而不思则罔。“罔”即迷惑而没有所得,把其意思引申一下,我们也就不难理解例题教学为什么要进行解后反思了。事实上,解后反思是一个知识小结、方法提炼的过程;是一个吸取教训、逐步提高的过程;是一个收获希望的过程。从这个角度上讲,例题教学的解后反思应该成为例题教学的一个重要内容。本文拟从以下三个方面作些探究。
一、在解题的方法规律处反思
“例题千万道,解后抛九霄”难以达到提高解题能力、发展思维的目的。善于作解题后的反思、方法的归类、规律的小结和技巧的揣摩,再进一步作一题多变,一题多问,一题多解,挖掘例题的深度和广度,扩大例题的辐射面,无疑对能力的提高和思维的发展是大有裨益的。
例如:(原例题)已知等腰三角形的腰长是4,底长为6;求周长。我们可以将此例题进行一题多变。
变式1 已知等腰三角形一腰长为4,周长为14,求底边长。(这是考查逆向思维能力)
变式2 已等腰三角形一边长为4;另一边长为6,求周长。(前两题相比,需要改变思维策略,进行分类讨论)
变式3已知等腰三角形的一边长为3,另一边长为6,求周长。(显然“3只能为底”否则与三角形两边之和大于第三边相矛盾,这有利于培养学生思维严密性)
变式4 已知等腰三角形的腰长为x,求底边长y的取值范围。
变式5 已知等腰三角形的腰长为X,底边长为y,周长是14。请先写出二者的函数关系式,再在平面直角坐标内画出二者的图象。(与前面相比,要求又提高了,特别是对条件0﹤y﹤2x的理解运用,是完成此问的关键)
再比如:人教版初三几何中第93页例2和第107页例1分别用不同的方法解答,这是一题多解不可多得的素材(AB为⊙O的直径,C为⊙O上的一点,AD和过C点的切线互相垂直,垂足为D。求证:AC平分∠DAB)
通过例题的层层变式,学生对三边关系定理的认识又深了一步,有利于培养学生从特殊到一般,从具体到抽象地分析问题、解决问题;通过例题解法多变的教学则有利于帮助学生形成思维定势,而又打破思维定势;有利于培养思维的变通性和灵活性。
二,在学生易错处反思
学生的知识背景、思维方式、情感体验往往和成人不同,而其表达方式可能又不准确,这就难免有“错”。例题教学若能从此切入,进行解后反思,则往往能找到“病根”,进而对症下药,常能收到事半功倍的效果!
有这样一个曾刊载于《中小学数学》初中(教师)版20__年第5期的案例:一位初一的老师在讲完负负得正的规则后,出了这样一道题:—3×(—4)= ?, A学生的答案是“9”,老师一看:错了!于是马上请B同学回答,这位同学的答案是“12”,老师便请他讲一讲算法:……,下课后听课的老师对给出错误的答案的学生进行访谈,那位学生说:站在—3这个点上,因为乘以—4,所以要沿着数轴向相反方向移动四次,每次移三格,故答案为9。他的答案的确错了,怎么错的?为什么会有这样的想法?又怎样纠正呢?如果我们的例题教学能抓住这一契机,并就此展开讨论、反思,无疑比讲十道、百道乃至更多的例题来巩固法则要好得多,而这一点恰恰容易被我们所忽视。
计算是初一代数的教学重点也是难点,如何把握这一重点,突破这一难点?各老师在例题教学方面可谓“千方百计”。例如在上完有关幂的性质,而进入下一阶段——单项式、多项式的乘除法时,笔者就设计了如下的两个例题:
(1)请分别指出(—2)2,—22,—2-2,2-2的意义;
(2)请辨析下列各式:
① a2+a2=a4 ②a4÷a2=a4÷2=a2
③-a3 ·(-a)2 =(-a)3+2 =-a5
④(-a)0 ÷a3=0 ⑤(a-2)3·a=a-2+3+1=a2
解后笔者便引导学生进行反思小结。
(1)计算常出现哪些方面的错误? (2)出现这些错误的原因有哪些? (3)怎样克服这些错误呢? 同学们各抒己见,针对各种“病因”开出了有效的“方子”。实践证明,这样的例题教学是成功的,学生在计算的准确率、计算的速度两个方面都有极大的提高。
三、在情感体验处反思
因为整个的解题过程并非仅仅只是一个知识运用、技能训练的过程,而是一个伴随着交往、创造、追求和喜、怒、哀、乐的综合过程,是学生整个内心世界的参与。其间他既品尝了失败的苦涩,又收获了“山重水复疑无路,柳暗花明又一村”的喜悦,他可能是独立思考所得,也有可能是通过合作协同解决,既体现了个人努力的价值,又无不折射出集体智慧的光芒。在此处引导学生进行解后反思,有利于培养学生积极的情感体验和学习动机;有利于激励学生的学习兴趣,点燃学习的热情,变被动学习为自主探究学习;还有利于锻炼学生的学习毅力和意志品格。同时,在此过程中,学生独立思考的学习习惯、合作意识和团队精神均能得到很好的培养。
数学教育家弗赖登塔尔就指出:反思是数学活动的核心和动力。总之,解后的反思方法、规律得到了及时的小结归纳;解后的反思使我们拨开迷蒙,看清“庐山真面目”而逐渐成熟起来;在反思中学会了独立思考,在反思中学会了倾听,学会了交流、合作,学会了分享,体验了学习的乐趣,交往的快慰。
初三数学教学反思 篇二一元二次方程一课,感触颇深。下面谈一下自己的几点体会:
一、本节课,知识的呈现作了重大调整,不是以讲解为主方式也不是以单一的知识为线条,而是在突出数学知识的同时,将数学知识和结论溶于数学活动之中,这样学生学习数学知识的过程就成了进行数学实验的过程,成了“做学问”的过程。在这样的探究学习过程中,学生得到的数学知识是通过自己实验、观察、讨论、归纳得到的。
二、以问题为主线,解放学生的身心,激发学生的灵感;体现“自主-----合作-----探究”的学习方式,培养学生小组合作的学习能力,让学生感受到过程是自己亲身体验的,结论是自己发现的,知识是自己主动获取并学会的,能够增强学生对学习的信心,再次突出本节课的亮点。
三、把课堂真正的还给学生。我参与,我快乐,我是课堂的主人。放手让学生有话可说,有疑好争,为学生深入思考、积极探索提供机 ……此处隐藏5497个字……的休息时间的利用,更不能轻视早上、中午、回家至晚饭前的零碎时间,哪怕利用这零碎的时间解决一道题、一个知识点,集少可以成多吗?复习阶段采用“滚雪球”的复习方法有利于知识的消化吸收,当我们在复习某一个知识点时,当然应以这一知识点为主,与此同时不妨也可将涉及这个知识点的其他知识引入。将它一并复习,等到复习到后边的知识点时,又可将前边复习过的这个知识点再次引入巩固一下,这样知识记得牢,又能将知识综合运用,反反复复印象深刻。复习阶段要狠抓“双基”做到天天练不间断,它的好处是使基础的东西能熟练掌握更可以促进综合题的解决,达到相辅相成的作用。复习阶段要注意对知识学会串联的方法,例如可通过列表格,记成口诀串联知识;也可将同类型的知识,通过类比,融为一体。这样既能提示出它们的共性,又能突出各自特点,从而提高应用它们解题的能力;也可通过某个公式或定理的应用,串连集中同一类型习题,或以某个解题方法为专题,串联有关定理或公式。如以“证明角相等”为专题,可总结出:共有多少种证法?应用了哪些知识?通过了什么途径?这样归纳、整理,使我们集中解决了这一类型题的证明方法。
初三数学教学反思 篇八对即将中考的同学而言,狠抓基础知识复习是总复习中最重要的任务。以成都中考为例,满分150分的数学试卷,基础知识往往会占到110分左右。因此,复习时只有先夯实A卷为主的基础内容,才能去拓展提高,攻克B卷难关。
目前进行的第一轮复习重在打牢基础,这是至关重要的。其间,同学们应善用学习方法对薄弱环节进行过手训练。在课堂上,老师一般只能照顾多数同学的水平,要提升自己的课堂兴趣与收获,应“带着问题去听课”,或要求自己每节课至少得到几个收获点,从而听得有挑战、有目标。如何做到有针对性地复习,我推荐一种“反思复习法”,即重视错题反思,特别是订正完有一定代表性的考试错题后,对解题思路、答题技巧、知识缺陷、解题过程中的思维严谨性、表述方式的准确性,甚至考试的心态等逐一进行反思,多练多纠正,在心中形成警戒线避免再犯。
另外,夯实基础的关键还在于适时回归教材。复习时最好能把课本上所有例题、练习题都过一遍,或至少请老师勾出个人需要强化的例题、练习题,加以强化复习。
初中数学的知识板块中,函数、相似图形、圆三大部分既是与高中衔接紧密的重点章节,又是易失分之处。复习函数知识时,建议注重联系实际与综合运用。对较难的部分,如常见于考试的压轴题、分值又较高的二次函数与几何的综合应用类题等,则可视情况而复习,争取至少解决一至两个问题,就能得到尽可能多的分数。对于相似图形板块,应重点关注特殊图形的变化,以及相似图形与四边形及圆的综合应用等部分知识。圆的章节则最好反复强化基本概念,进而再提高和加深训练。
九年级数学教学反思 篇九自从召开了全县的初中教学工作会议以后,“126”高效课堂策略深入到我县初中的各个角落,可见是风靡阳都。我校总舵手力挽狂澜抓住这次教育的春凤,先后召开了几次班子会、研究部署了课改的行动思路、出台了措施,强化落实,班子包干,全校教职工大会小会召开了几次号召动员、发动,使我校上上下下立即动了起来!
在新得教学策略的指导下,我尝试着去运用“126”策略,但有些时候还是不敢完全的放开,担心好学生得不到更高的发展,后进生只是凑热闹。
如果真的放开,一节课或许处理4---5道题,一节课下来挺担心的,但是约谈了几位学生也是我内心有一丝宽慰,这就是他(她)们说:“原来都是跟着教师的思路,感觉像在飞,而现在是自己去想、自己去讲,亲临其境去体验、思考,收获实了”!
“问渠那得清如许,为有源头活水来”。
初三数学的教学反思 篇十《用比例知识解决问题》是本单元最后一部分知识,是学习了正比例和反比例关系后的实践应用。本节课,在教学中教师力求通过知识的迁移,结合学生的生活经验,让学生借助函数关系间变量的对应规律,正确判断两种相关联的量之间的依存关系,根据它们的正、反比例关系,列出相应的比例式,解决问题。
在实际教学中,我把握本节课的重点,采用开放式的教学方法,将课堂的主动权放手学生,让学生在自己探索、独立尝试、同桌交流、质疑辨析、对比归纳、概括小结、拓展延伸中轻松,高效地完成了教学任务,反思本节课的成功之处,我有以下三点感悟:
一、课堂永远是无法完全预设的
本节课,课前的复习按照预期的设计顺利完成。当我出示例5后,学生默读题目,独立分析后,我鼓励学生自主探索,独立尝试解决问题,不到1分钟,同学们的小手就此起彼伏地浮现在桌面上,个个跃跃欲试,当2名学生将自己的思索展现在黑板上时,我不禁一惊,这两位学生竟然用了不同的解题方法,除了以前学过的归一、归总法,又出现了今天的新课方法,按我预先设计的方案,学生用以前的方法解决后,我将会出示一个自学提示,引导学生按步骤,按思路来用比例解决,学生会顺理成章地理解题意,学会用比例解决。没想到学生自己就能列出正确的比例,我顺势请板演的同学到黑板前讲一讲自己的思考,真没想到,这个孩子讲得头头是道,把我的“活”儿抢了。同学们听了她的讲解,顿时茅塞大开,把我连续出示的两个基本练习做得漂漂亮亮。
课后我反思这个环节,异常感慨,本来以为丝丝相扣的自学提示,会让学生在老师无形的指挥下,理解正比例应用题的思考方法,没想到一个不到1分钟的独立尝试,就让学生破解了我的预设,而后我的顺势相邀——请学生讲解,却让课程呈现了更为灿烂的一幕。课堂永远是无法预设的,当出现与预设不相符的状况时,教师一定要会调控,得当的调节能让课堂更加精彩。
二、错误点就是生成点
在进行变式练习时,同学们争先恐后地上讲台展示,马小贺同学出现的错误给课堂带来了新的生成,我们习惯应用“总价÷数量=单价”,当单价一定时,可以列成正比例式,而马小贺同学却将等式的左边写成“数量÷总价”,班内同学议论纷纷,我借势引导学生,抓住正比例关系的对应量对等的要点,使一个比例式拓展成了两个,让学生明白了,两个变量之间的对应规律和依存关系。课堂中无意的错误点,生成了新的知识点,让学广开世面,更深层次地理解最简单的函数知识。
三、真实的课堂,回生阻道
我喜欢真实的课堂,这节课,课前我一点儿都没有提示前面的知识。课堂上,当提问正比例和反比例关系时,很多学生都有些生疏,对量与量之间的变化规律有些陌生,经过老师提示后,学生们才回想起前面的概念,这部分所用的时间比预先多用了1分钟左右,虽然是大约1分钟的时间,却给我敲响了警钟,知识一定要常温常故,尽量避免学生的回生,更要防止知识的断层。
反思这节课,给我带来了很多启示,一位好的数学老师必须具备全面、科学调控课堂的能力,及时抓住课堂的生成点,适时点拨,拓展延伸。与此同时,教师还不能忽视知识的前后联系,不能让知识搁浅,做好做实日常工作,让数学思想、数学方法、数学知识扎根学生心中。
学基础知识和基本技能的落实还不够扎实。这是本堂课呈现的一对矛盾,恐怕也带有一定的普遍性。
你也可以在搜索更多本站小编为你整理的其他初三数学教学反思【多篇】范文。