
说明:多边形的内角和教学设计新版多篇为的会员投稿推荐,但愿对你的学习工作带来帮助。
多边形的内角和教案 篇一教学目的
使学生能熟练灵活地利用三角形内角和,外角和以及外角的两条性质进行有关计算。
重点:利用三角形的内角和与外角的两条性质来求三角形的内角或外角。
难点:比较复杂图形,灵活应用三角形外角的性质。
教学过程
一、复习提问
1.三角形的'内角和与外角和各是多少?
2.三角形的外角有哪些性质?
二、新授
例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各内角的度数。
分析:由已知条件可得∠B=2∠A,∠C=3∠A所以可以根据三角形的内角和等于180°来解决。
做一做:如图,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46°
A
BDEA
(1)你会求∠DAE的度数吗?与你的同伴交流。
(2)你能发现∠DAE与∠B、∠C之间的关系吗?
(2)若只知道∠B-∠C=20°,你能求出∠DAE的度数吗?
分析:(1)∠DAE是哪个三角形的内角或外角?
(2)在△ADE中,已知什么?要求∠DAE,必需先求什么?
(3)∠AED是哪个三角形的外角?
(4)在△AEC中已知什么?要求∠AEB,只需求什么?
(5)怎样求∠EAC的度数?
三、巩固练习
1.如图,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分线,求∠ADC,∠ADB的度数。
2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各内角的度数。
四、小结
三角形的内角和,外角的性质反映了三角形的三个内角外角是互相联系与制约的,我们可以用它来求三角形的内角或外角,解题时,有时还需添加辅助线,有时结合代数,用方程来解比较方便。
多边形的内角和教案 篇二[教学目标]
知识与技能:
1.会用多边形公式进行计算。
2.理解多边形外角和公式。
过程与方法:
经历探究多边形内角和计算方法的过程,培养学生的合作交流意识力。
情感态度与价值观:
让学生在观察、合作、讨论、交流中感受数学转化思想和实际应用价值,同时培养学生善于发现、积极思考、合作学习、勇于创新的学习态度。
[教学重点、难点与关键]
教学重点:多边形的内角和。的应用。
教学难点:探索多边形的内角和与外角和公式过程。
教学关键:应用化归的数学方法,把多边形问题转化为三角形问题来解决。
[教学方法]
本节课采用“探究与互动”的教学方式,并配以真的情境来引题。
[教学过程:]
(一)探索多边形的内角和
活动1:判断下列图形,从多边形上任取一点c,作对角线,判断分成三角形的个数。
活动2:①从多边形的一个顶点出发,可以引多少条对角线?他们将多边形分成多少个三角形?②总结多边形内角和,你会得到什么样的结论?
多边形边数分成三角形的个数图形
内角和计算规律
三角形31180°(3-2)·180°
四边形4
五边形5
六边形6
七边形7
。。。。。。
n边形n
活动3:把一个五边形分成几个三角形,还有其他的分法吗?
总结多边形的内角和公式
一般的,从n边形的一个顶点出发可以引____条对角线,他们将n边形分为____个三角形,n边形的内角和等于180×______。
巩固练习:看谁求得又快又准!(抢答)
例1:已知四边形ABCD,∠A+∠C=180°,求∠B+∠D=?
(点评:四边形的一组对角互补,另一组对角也互补。)
(二)探索多边形的外角和
活动4:例2如图,在五边形的每个顶点处各取一个外角,这些外角的'和叫做五边形的外角和。五边形的外角和等于多少?
分析:(1)任何一个外角同于他相邻的内角有什系?
(2)五边形的五个外角加上与他们相邻的内角所得总和是多少?
(3)上述总和与五边形的内角和、外角和有什么关系?
解:五边形的外角和=______________-五边形的内角和
活动5:探究如果将例2中五边形换成n边(n≥3),可以得到同样的结果吗?
也可以理解为:从多边形的一个顶点A点出发,沿多边形的各边走过各点之后回到点A.最后再转回出发时的方向。由于在这个运动过程中身体共转动了一周,也就是说所转的各个角的和等于一个______角。所以多边形的外角和等于_________。
结论:多边形的外角和=___________。
练习1:如果一个多边形的每一个外角等于30°,则这个多边形的边数是_____。
练习2:正五边形的每一个外角等于________,每一个内角等于_______。
练习3.已知一个多边形,它的内角和等于外角和,它是几边形?
(三)小结:本节课你有哪些收获?
(四)作业:
课本P84:习题7.3的2、6题
附知识拓展—平面镶嵌
(五)随堂练习(练一练)
1、n边形的内角和等于__________,九边形的内角和等于___________。
2、一个多边形当边数增加1时,它的内角和增加()。
3、已知多边形的每个内角都等于150°,求这个多边形的边数?
4、一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()
A:360°B:540°C:720°D:900°
5.已知一个多边形,它的内角和等于外角和的2倍,求这个多边形的边数?
多边形的内角和教案 篇三教学目标
知识与技能:经历探索多边形的外角和公式的过程;会应用公式解决问题;
过程与方法:培养学生把未知转化为已知进行探究的能力,在探究活动中,进一步发展学生的说理能力与简单的推理能力。
情感态度与价值观:让学生体验猜想得到证实的成功喜悦和成就感,在解题中感受生活中数学的存在,体验数学充满着探索和创造。
教学重点:多边形外角和定理的探索和应用。
教学难点:灵活运用公式解 ……此处隐藏4346个字……问题转化为三角形来解(渗透化归思想),并观察图4-3用对角线分成的这些三角形与原四边形的关系。
(5)强调四边形的表示方法,一定要按顶点顺序书写四边形如图4—1.
(6)在判定一个四边形是不是凸四边形时,一定要按照定义的要求把每一边都延长后再下结论如图4-4,图4-5.
2.四边形内角和定理
教师问:
(1)在图4-3中对角线ac把四边形abcd分成几个三角形?
(2)在图4-6中两条对角线ac和bd把四边形分成几个三角形?
(3)若在四边形abcd如图4-7内任取一点o,从o向四个顶点作连线,把四边形分成几个三角形。
我们知道,三角形内角和等于180°,那么四边形的内角和就等于:
①2×180°=360°如图4—6;
②4×180°-360°=360°如图4-7.
例1已知:如图4—8,直线于b、于c.
求证:(1) ; (2) 。
本例题是四边形内角和定理的应用,实际上它证实了两边相互垂直的两个角相等或互补的关系,何时用相等,何时用互补,假如需要应用,作两三步推理就可以证出。
总结、扩展
1.四边形的有关概念。
2.四边形对角线的作用。
3.四边形内角和定理。
八、布置作业
教材p128中1(1)、2、3.
九、板书设计
四边形有关概念
四边形内角和
例1
十、随堂练习
教材p122中1、2、3.
多边形的内角和与外角和教案 初中数学多边形内角和教案 篇九(一)知识教学点
1.使学生掌握四边形的有关概念及四边形的内角和外角和定理。
2.了解四边形的不稳定性及它在实际生产,生活中的应用。
(二)能力训练点
1.通过引导学生观察气象站的实例,培养学生从具体事物中抽象出几何图形的能力。
2.通过推导四边形内角和定理,对学生渗透化归思想。
3.会根据比较简单的条件画出指定的四边形。
4.讲解四边形外角概念和外角定理时,联系三角形的有关概念对学生渗透类比思想。
(三)德育渗透点
使学生认识到这些四边形都是常见的,研究他们都有实际应用意义,从而激发学生学习新知识的兴趣。
(四)美育渗透点
通过四边形内角和定理数学,渗透统一美,应用美。
类比、观察、引导、讲解
1.教学重点:四边形及其有关概念;熟练推导四边形外角和这一结论,并用此结论解决与四边形内外角有关计算问题。
2.教学难点:理解四边形的有关概念中的一些细节问题;四边形不稳定性的理解和应用。
3.疑点及解决办法:四边形的定义中为什么要有“在平面内”,而三角形的定义中就没有呢?根据指定条件画四边形,关键是要分析好作图的顺序,一般先作一个角。
2课时
投影仪、胶片、四边形模型、常用画图工具
教师引入新课,学生观察图形,类比三角形知识导出四边形有关概念;师生共同推导四边形内角和的定理,学生巩固内角和定理和应用;共同分析探索外角和定理,学生阅读相关材料。
第2课时
【复习提问】
1.什么叫四边形?四边形的内角和定理是什么?
2.如图4-9, 求 的度数(打出投影).
【引入新课】
前面我们学习过三角形的外角的概念,并知道外角和是360°.类似地,四边形也有外角,而它的外角和是多少呢?我们还学习了三角形具有稳定性,而四边形就不具有这种性质,为什么?下面就来研究这些问题。
【讲解新课】
1.四边形的外角
与三角形类似,四边形的角的一边与另一边延长线所组成的角叫做四边形的外角,四边形每一个顶点处有两个外角,这两个外角是对顶角,所以它们是相等的。四边形的外角与它有公共顶点的内角互为邻补角,即它们的和等于180°,如图4-10.
2.外角和定理
例1 已知:如图4-11,四边形abcd的四个内角分别为 ,每一个顶点处有一个外角,设它们分别为 .
求 .
(1)向学生介绍四边形外角和这一概念(取四边形的每一个内角的一个邻补角相加的和).
(2)教给学生一组外角的画法——同向法。
即按顺时针方向依次延长各边,如图4—11,或按逆时针方向依次延长各边,如图4-12,这四个外角和就是四边形的外角和。
(3)利用每一个外角与其邻补角的关系及四边形内角和为360°.
证得:
360°
外角和定理:四边形的外角和等于360°
3.四边形的不稳定性
①我们知道三角形具有稳定性,已知三个条件就可以确定三角形的形状和大小,已知一边一夹角,作三角形你会吗?
(学生回答)
②若以 为边作四边形abcd.
提示画法:①画任意小于平角的 .
②在 的两边上截取 .
③分别以a,c为圆心,以12mm,18mm为半径画弧,两弧相交于d点。
④连结ad、cd,四边形abcd是所求作的四边形,如图4-13.
大家比较一下,所作出的图形的形状一样吗?这是为什么呢?因为 的大小不固定,所以四边形的形状不确定。
③(教师演示:用四根木条钉成如图4-14的框)虽然四边形的边长不变,但它的形状改变了,这说明四边形没有稳定性。
教师指出,“不稳定”是四边形的一个重要性质,还应使学生明确:
①四边形改变形状时只改变某些角的大小,它的边长不变,因而周长不变它仍为四边形,所以它的内角和不变。②对四条边长固定的四边形任何一个角固定或者一条对角线的长一定,四边形的形状就固定了,如教材p125中2的第h问,为克服不稳定性提供了理论根据。
(4)举出四边形不稳定性的应用实例和克服不稳定的实例,向学生进行理论联系实际的教育。
【总结、扩展】
1.小结:
(1)四边形外角概念、外角和定理。
(2)四边形不稳定性的应用和克服不稳定性的理论根据。
2.扩展:如图4-15,在四边形abcd中, ,求四边形abcd的面积
教材p128中4.
教材p124中1、2
补充:(1)在四边形abcd中, , 是四边形的外角,且 ,则 度。
(2)在四边形abcd中,若分别与 相邻的外角的比是1:2:3:4,则 度, 度, 度, 度
(3)在四边形的四个外角中,最多有_______个钝角,最多有_____个锐角,最多有____个直角。
你也可以在搜索更多本站小编为你整理的其他多边形的内角和教学设计新版多篇范文。